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Dewetting, partial wetting, and spreading of a two-dimensional monolayer on solid surface
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We study the behavior of a semi-infinite monolayer, which is placed initially on a half of an infinite in both
directions, ideal crystalline surface, and then evolves in time due to random motion of the monolayer particles.
Particles dynamics is modeled as the Kawasaki particle-vacancy exchange process in the presence of long-
range attractive particle-particle interactions. In terms of an analytically solvable mean-field-type approxima-
tion we calculate the mean displacementX(t) of the monolayer edge and discuss the conditions under which
a monolayer spreads@X(t).0#, partially wets @X(t)50#, or dewets from the solid surface@X(t),0#.
@S1063-651X~98!50807-0#

PACS number~s!: 68.15.1e, 05.60.1w, 64.60.Ht, 64.90.1b
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Dynamics and static properties of thin liquid films o
solid surfaces have been studied for many years, resultin
a seemingly good understanding of the problem@1,2#. How-
ever, with the advent of new experimental techniques,
enable one to study properties of molecularly thin~MT!
films, it has become clear that the developed theoretical c
cepts apply only to sufficiently thick films; for MT films
significant departures from the standard behavior have b
observed@3,4#. In particular, several remarkable featur
have been revealed by ellipsometric studies of the MT p
cursor films, i.e., films emitted by~sessile! liquid drops
placed on solid substrates@4#.

First, such films have been detected even in the cas
nonwetting drops. This implies that physical conditions
which such a MT film appears may be different from t
ones corresponding to the wetting/dewetting transition
macroscopicscales. Next, precursors do not spread at a c
stant rate; the mean displacement of the film’s edge gr
with time t only in proportion toAt. Last, ‘‘fine structure’’
of the MT precursors may be very different; in some ca
the film’s density shows a pronounced variation with t
distance from the macroscopic drop, which reveals
surface-gas-like, rather than the liquidlike behavior. In ot
systems, the films are dense and compact. Even more s
ing, on the intermediate-energy substrates surprising ‘‘
raced’’ patterns appear, formed by several superimposed
precursors each spreading at theAt rate on top of lower
layers.

Meanwhile, several attempts have been made to exp
why do the MT precursor films spread at theAt rate. Refer-
ence@5# proposed a ‘‘stratified droplet’’ model, in which
sessile drop is regarded as a succession of horizontal la
each layer being a two-dimensional, incompressible Nav
Stokes liquid. This model suggests that theAt law results
from the competition between the liquid-solid attraction
which represent the driving force of spreading, and visco
type frictional forces, which control particles dynamics
the solid surface. We note parenthetically that similar id
have been used to describe dynamics of the reverse
cesses: dewetting of a monolayer@6# and squeezing of a MT
PRE 581063-651X/98/58~1!/20~4!/$15.00
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lubricating film out of a gap between two solids@7#, for
which it has been also predicted that the radii of the dewe
areas grow at theAt rate. Next, Ref.@8# described droplet
spreading in terms of the Langevin dynamics of a nonvola
fluid edge, modeled by horizontal solid-on-solid-mod
strings. Such an approach has reproduced the ‘‘terrac
profiles; theAt law was found, however, only as a transie
regime. Lastly, in a microscopic approach of Refs.@9# the
MT film was considered as a lattice gas of interacting p
ticles connected to a reservoir~droplet!. Here, theAt law
was obtained for both precursors of the sessile drops
creeping films in the capillary rise geometries; it was claim
that such a behavior is controlled by migration of voids fro
the advancing edge of the film to the reservoir.

Despite reasonably good explanation of the dynamical
havior, provided by Refs.@5,8,9#, several fundamental ques
tions still remain largely unanswered. In particular, the d
pendence of the prefactor in theAt law on the temperature
kBT, and on the parameters of the interaction potentials
not been elucidated so far. As a matter of fact, the mode
Ref. @5# discards the effects of the drop’s surface tens
and/or of the monolayer edge tensionge on spreading kinet-
ics. In consequence, Ref.@5# predicts that ‘‘terraced’’ spread
ing appears as soon as any kind of attractive liquid-so
interactions~LSI! is present, which contradicts apparently
the experience@4#. Contrary to Ref.@5#, the models of Refs.
@8# and@9# takege into account and show that the film ma
actually appear only if the strength of the LSI exceeds cer
threshold value. However, a common subtle point of b
Refs. @8# and @9# is that the prefactor in theAt law is ex-
pressed in terms of several parameters, which are assum
be independent of the dynamics; in Refs.@9#, for instance,
these are the particle density in the reservoir andge . On the
other hand,ge originates from attractive liquid-liquid inter
actions~LLI ! and thus depends on the density profile in t
film. The latter is itself dependent on the spreading rate,
hence, onge . Therefore, the calculation ofge and, conse-
quently, of the prefactor in theAt law requires a solution of
essentially a nonlinear dynamical problem in which attra
tive LLI are taken into account explicitly.
R20 © 1998 The American Physical Society
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In this Rapid Communication we study analytically th
behavior of a liquid monolayer, which occupies initially
bounded, macroscopically large area of the solid surface,
then evolves in time due to random motion of the monola
particles. Particles’ dynamics is modeled as the Kawas
type particle-vacancy exchange process in the presenc
short-range repulsive~hard-core! and weak long-range at
tractive particle-particle interactions. Here we conside
simple case when the initially occupied region is the ha
plane2`,X<0, Fig. 1, and calculate the mean displac
ment X(t) of the monolayer edge. We note that our resu
apply, as well, to the intermediate time behavior in seve
other two-phase geometries. Particularly, the initially dew
ted region can be a hole of radiusR, nucleated in a homo
geneous monolayer, or the monolayer can occupy a circ
region of radiusR, which is a situation that appears at th
late stages of sessile drops spreading@4#. For such geom-
etries, our results describe the kinetics on time scales s
thatX(t)!R, in which regime the precise form of the phas
separating boundary is not important~see, e.g., Refs.@9#!.

To determine the time evolution ofX(t), we develop a
mean-field-like, self-consistent approach, in which the n
linear coupling between the density distribution in t
spreading film and the edge tensionge is taken into accoun
explicitly. Within this approach we recover the result
Refs.@9#, i.e., the lawX(t)5AAD0t, in whichD0 is the bare
diffusion coefficient describing dynamics of an isolated p
ticle on the solid surface. Here, however, we define the p
actorA explicitly as a function ofkBT and of the interaction
parameters. We show thatA can be positive or negative
which means that the monolayer can spread, partially we
dewet from the solid surface, and determine the tempera
Tw/dw of the wetting-dewetting transition in the monolay
regime. Moreover, we find that spreading of the monola
can proceed quite differently at differentT, which agrees
with the experimentally observed behavior@4#. When
T>Tb , where Tb is also found explicitly, we have tha
ge[0, A;Aln(t) as t→`, and the density in the monolaye
varies strongly with the distance from the edge. We rem
that this finding contradicts Refs.@9#, which suggest tha
such a ‘‘surface-gas’’-like spreading may take place only
the absence of attractive LLI. For lowerT, such that
Tw/dw<T,Tb , we find that the density variation is less pr
nounced and bothA andge are positive and constant, whic
signifies that in thisT range the monolayer spreads as
‘‘liquid.’’ Last, for T,Tw/dw the monolayer dewets from th
surface.

FIG. 1. Initial configuration of a monolayer on top of a sol
surface. Wavy lines depict the potential energy landscape cre
by the solid atoms.
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The model to be studied here is defined as follows:
~i! The particles experience two types of interactions,

LLI and LSI. The LSI create effectively a lattice of potenti
wells ~with the coordination numberz and the interwell dis-
tances!, such that the particles reside in the local minima
these wells. We assume that the LSI correspond to the l
of the so-called intermediate localized adsorption, which
appropriate for many adsorbates and persists over a widT
range@2#. In this limit the particles are neither complete
fixed in the wells, nor completely mobile: The LSI wells a
deep with respect to desorption~desorption barrier
Ud@kBT! so that only a monolayer can exist, but have mu
lower barrierU1 against the movement across the surfa
Further on, we suppose that the LLI are two-body, cent
and additive; the LLI potentialU(r ) is a hard-core at dis-
tancer 5s, which means that each well can be occupied
one particle at most, and is attractive forr .s, U(r )5
2U0(T)(s/r )n, n.2. The parameterU0(T)!Ud , which is
the case for many realistic situations@2# and which implies
that the LLI incur only small local perturbations to the arr
of the LSI wells.

~ii ! Occupation of the well with radius-vectorr at timet is
described by the variableh(r ;t), which can assume two val
ues, 0 and 1; its realization average value, i.e., the lo
density, is denoted asr(r ;t)5h(r ;t). The initial configura-
tion of the monolayer is depicted in Fig. 1, i.e., the mon
layer particles are placed at random positions and at a fi
coverager,1 ~number of occupied wells as a fraction of th
total number of wells per unit area! in the wells of the half-
plane2`,X<0.

~iii ! The particles motion is activated by chaotic vibr
tions of solid atoms and proceeds by rare events of h
between the local minima of adjacent wells. In absence
the LLI, one may estimate the diffusion coefficient for such
motion to beD0'vs2/z, wherev is the frequency of hops
Now, the LLI couple the dynamics of any given particle
the motions of all other particles: first, hard-core repulsi
prevents multiple occupancy of any potential well; seco
on escaping from the well with radius-vectorr , any given
particle follows preferentially the local gradient of the LL
potential landscapeU(r ;t),

U~r ;t !52U0~T!sn(
r9

h~r 9;t !

ur 2r 9un , ~1!

where the summation extends over the entire lattice, exc
ing r 95r . To take the LLI into account, we stipulate that fo
any given particle leaving the well with radius-vectorr at
time momentt, the choice of the jump direction is random
and governed by the position-and time-dependent proba
ties @10#,

p~r ur z8!5Z21expS b

2
@U~r ;t !2U~r z8 ,t !# D , ~2!

wherer z8 is the radius-vector of one ofz wells, adjacent to
the well at r , b51/kBT, and Z denotes the normalization
factor. When the jump direction is chosen, the particle
tempts to hop into the target well. The hop is fulfilled if th
well is unoccupied; otherwise, the particle attempting to h
is repelled back to the well atr .
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We proceed further on by assuming local equilibriu
~see, e.g., Refs.@10#!, which implies that occupations of dif
ferent wells factorize and thus allows for the description
terms of local densities,r(r ;t). For these, we find

1

v

]

]t
r~r ;t !52r~r ;t !( r

z8
p~r ur z8!@12r~r z8 ;t !#

1@12r~r ;t !#( r
z8
p~r z8ur !r~r z8 ;t !, ~3!

in which p(r ur z8) are determined by Eqs.~2! and ~1! with
h(r ;t) replaced byr(r ;t). Equation~3! has to be solved
subject to the initial condition thatr(r ;t50)50 for X.0
andr(r ;t50)5r for X<0.

Let us analyze now, on the basis of Eq.~3!, the time
evolution of the mean displacementX(t) of the monolayer
edge. To do this, we follow Refs.@9#, supposing that for the
long-ranged, but rapidly vanishing LLI a hop of any partic
which is not directly at the edge does not change the ene
in Eq. ~1!. This means, in virtue of Eq.~2!, that for such
particles all hopping directions are equally probable and th
migration on the surface is constrained by the hard-core
teractions only. The particles being at the edge, however,
effectively attracted by the ‘‘bulk’’ monolayer, which resul
in asymmetric hopping probabilities~see Refs.@9# for more
details!. We note that such an approximation is actually
translation onto the molecular level of standard descripti
of the liquid front dynamics as a competition between s
face tension and internal pressure@1,2#.

Further on, since we are interested in the behavior of
mean displacement of the edge, it is justified to neglect
fluctuations aroundX(t) along theY axis. Consequently, we
suppose that the edge position does not depend onY, Fig. 1,
which makes the system effectively one-dimensional and
original two-dimensional geometry enters only through
2D diffusion coefficientD0 and 2D edge tension@see Eq.
~9!#.

Now, the one-dimensional model we have to study c
sists of a 1D hard-core lattice gas, which is put initially in
a ‘‘shock’’ configuration and then evolves in time by pa
ticles attempting to hop to the nearest unoccupied sites.
‘‘shock’’ configuration means that all particles are placed
random with a fixed mean densityr at the sites2`,X
<0 of an infinite in both directions 1D lattice. All particles
except the rightmost one~RMP!, which defines position of
the edge, have equal probabilities (51/z) for hopping to the
left or to the right. The RMP, whose position isX(t), is
attracted by the gas particles and thus has asymmetric
ping probabilities, which obey Eq.~2! with h(r ;t) replaced
by r(r ;t).

To determineX(t) we now proceed as follows. Recollec
ing first the results of Refs.@9#, we anticipate that at suffi
ciently large times the particle density past the RMP tend
some constant value. This implies, in virtue of Eqs.~1! and
~2!, that p„X(t)uX(t)6s… approach limiting valuesp6 ,
which are independent ofX(t) andt. Solving next the prob-
lem for arbitrary fixedp6 , we determineX(t) and the den-
sity profile r(l;t), l being the distance from the edg
l5X(t)2X. Finally, insertingr(l;t) into Eqs.~1! and~2!,
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we find the closure equation, which determinesp6 ~and
hence,A! self-consistently as functions ofkBT and of the
LLI parameters.

The dynamics of a biased RMP in a 1D hard-core g
placed in the just described ‘‘shock’’ configuration, has be
studied in Ref.@11#. It was shown thatX(t) obeys

X~ t !5AAD0t, ~4!

where the prefactorA is defined forp2.p1 by

Ap A

2
expS A2

4 D F11FS A

2 D G5
rp2

p22p1
21, ~5!

F(x) being the probability integral. In the special ca
p25p1 , A is no longer constant and grows with time as

A}A2 lnS r2vt

p D , as t→`. ~6!

Next, it was found that the density profiler(l;t) past the
RMP has a characteristicS-like shape;r(l;t) is almostcon-
stant ~and different fromr! in a region of size;X(t),

r~l;t !5S 12
p1

p2
D F11

A2l

X~ t !
1OS A4l2

X2~ t ! D G , ~7!

while for greaterl, l@X(t)/A2, it approachesr exponen-
tially fast. Such a form ofr(l;t) stems from the fact tha
vacancies propagate into the gas-phase only diffusively
thus homogenize the density distribution past the RMP o
at scales of order ofX(t). Note, however, that the total num
ber of particles is conserved i.e., limL→`L21 *0

Ldlr(l;t)
5r.

Turning now back to the 2D problem under study, w
recall thatp6 are not arbitrary parameters, but their valu
are determined by the density distribution past the edge.
serting Eq.~7! into the Eqs.~1! and ~2!, we find the self-
consistent closure equation forp1 /p2 ,

p1

p2
5exp~2bsge!; ge5S 12

p1

p2
D U0~T!d

2s
, ~8!

d5sn (
r 9,r9Þr6

H 1

ur22r 9un2
1

ur12r 9unJ , ~9!

wherer6 denote the 2D vectors„X(t)6s,Y….
Therefore, we find that the mean displacement of

monolayer edge obeys Eq.~4!, in which A is related to
U0(T), r, andb through Eqs.~5! and~8!. Below we present
some analytical estimates ofA(«), where«5bU0(T)d/2 is
a critical dimensionless parameter.

We find that depending on the value of the paramete«
four different regimes can be observed:

~1! When «P@0;1# the only solution of Eq.~8! is
p1 /p251, which means that herege[0 and the monolayer
behaves as an ideal surface gas. In this regimeX(t)
;At ln(t) and the densityr(l;t) changes rapidly with the
distancel from the edge being equal tor for l→` and to
zero forl50.
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~2! When«P]1;«c[, where«c52 ln(12r)/r, the prefac-
tor A is positive and finite. Here,X(t);At and the mono-
layer also wets the solid. The edge tensionge.0 and van-
ishes asge;(Tb2T) when T→Tb ; Tb is thus the critical
temperature of the surface gas-liquid transition, which is
fined implicitly by equationTb5U0(Tb)d/2kB , («51). In
this regimeA diverges when«→11, A'Aln@r/(«21)#, and
vanishes when«→«c , A'(12r)(«c2«)/@12(12r)«c#.
The densityr(l;t) changes smoothly from the unperturb
valuer to the value at the edge exp(2bsge), which is close
to r.

~3! At «5«c the prefactorA is exactly equal to zero an
the monolayer partially wets the substrate. Hence, we de
«5«c as the point of the wetting-dewetting transition for t
monolayer. The corresponding critical temperature is de
mined byTw/dw5U0(Tw/dw)d/(2kB«c) and depends on th
coverager. We note thatTw/dw andTb are simply related to
each other. WhenU0(T) is independent ofT ~say, for
London-type LLI! one hasTw/dw5Tb /«c . Actually, the in-
set in Fig. 2 displays ther dependence of the rati
Tw/dw /Tb(51/«c) for this case. For the Keesom-type inte
actions, whenU0(T);1/T, Tw/dw5Tb /A«c. We finally re-
mark that the relation between« and «c distinguishes
whether it is favorable, at given physical conditions, to ha
a monolayer with coverager on the solid surface or not
Consequently, knowing«c and the density distribution in a
sessile drop with the respect to the height above the s
strate, one can predict the number of superimposed laye
the ‘‘terraced wetting’’ regime.

~4! For «.«c the prefactorA,0 and the monolayer dew
ets from the substrate. Here, a jammed region@where
r(l;t).r, Eq. ~7!# of size;X(t) appears, which impede
n,

r.

R

-

te

r-

e

b-
in

the motion of the retracting edge; the« dependence ofA is
thus very weak, being strongly limited by the diffusiv
squeezing out of ‘‘voids’’ at progressively larger and larg
scales. In fact, for sufficiently large« one may expect tha
the dewetting process will be accelerated by thickening
the monolayer, as is suggested in Ref.@6#.
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FIG. 2. Numerical solution of Eqs.~5! and~8!. Solid lines from
top to bottom show the dependence ofA on dimensionless param
eter « for r50.9, 0.8, 0.7, and 0.5, respectively. The linee51
separates the ‘‘surface gas’’ and liquidlike phases. The inset
plays ther dependence of«c , @A(«c)50#.
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