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Dewetting, partial wetting, and spreading of a two-dimensional monolayer on solid surface
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We study the behavior of a semi-infinite monolayer, which is placed initially on a half of an infinite in both
directions, ideal crystalline surface, and then evolves in time due to random motion of the monolayer particles.
Particles dynamics is modeled as the Kawasaki particle-vacancy exchange process in the presence of long-
range attractive particle-particle interactions. In terms of an analytically solvable mean-field-type approxima-
tion we calculate the mean displacemift) of the monolayer edge and discuss the conditions under which
a monolayer spreadgX(t)>0], partially wets[X(t)=0], or dewets from the solid surfadeX(t)<O0].
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PACS numbgs): 68.15:+e, 05.60+w, 64.60.Ht, 64.90+b

Dynamics and static properties of thin liquid films on lubricating film out of a gap between two solidZ], for
solid surfaces have been studied for many years, resulting which it has been also predicted that the radii of the dewetted
a seemingly good understanding of the prob[dn®?]. How-  areas grow at the/t rate. Next, Ref[8] described droplet
ever, with the advent of new experimental techniques, thagpreading in terms of the Langevin dynamics of a nonvolatile
enable one to study properties of molecularly tiMT)  fluid edge, modeled by horizontal solid-on-solid-model
films, it has become clear that the developed theoretical corstrings. Such an approach has reproduced the ‘“terraced”
cepts apply only to sufficiently thick films; for MT films profiles; theyt law was found, however, only as a transient
significant departures from the standard behavior have beeggime. Lastly, in a microscopic approach of R4®8] the
observed[3,4]. In particular, several remarkable featuresMT film was considered as a lattice gas of interacting par-
have been revealed by eIIipsometriC studies of the MT Préticles connected to a reservddrorﬂe’b_ Here, the\/f law
cursor films, ie., fims emitted bysessil¢ liquid drops  \as obtained for both precursors of the sessile drops and
placed on solid substrat¢s]. creeping films in the capillary rise geometries; it was claimed

First, such films have been detected even in the case @hat such a behavior is controlled by migration of voids from
nonwetting drOpS. This ImplleS that phySicaI conditions atthe advancing edge of the film to the reservoir.
which such a MT film appears may be different from the  pespite reasonably good explanation of the dynamical be-
ones corresponding to the wetting/dewetting transition ahavior, provided by Refd5,8,9], several fundamental ques-
macroscopicscales. Next, precursors do not spread at a contions still remain largely unanswered. In particular, the de-
stant rate; the mean displacement of the film’'s edge growpendence of the prefactor in th& law on the temperature,
with time t only in proportion toyt. Last, “fine structure”  kgT, and on the parameters of the interaction potentials has
of the MT precursors may be very different; in some casesiot been elucidated so far. As a matter of fact, the model of
the film’'s density shows a pronounced variation with theRef. [5] discards the effects of the drop’s surface tension
distance from the macroscopic drop, which reveals thend/or of the monolayer edge tensipgon spreading kinet-
surface-gas-like, rather than the liquidlike behavior. In otherics. In consequence, R¢6] predicts that “terraced” spread-
systems, the films are dense and compact. Even more strikig appears as soon as any kind of attractive liquid-solid
ing, on the intermediate-energy substrates surprising “terinteractions(LSI) is present, which contradicts apparently to
raced” patterns appear, formed by several superimposed Mihe experienc4]. Contrary to Ref[5], the models of Refs.
precursors each spreading at tkfe rate on top of lower [8] and[9] take y, into account and show that the film may
layers. actually appear only if the strength of the LS| exceeds certain

Meanwhile, several attempts have been made to explaithreshold value. However, a common subtle point of both
why do the MT precursor films spread at tkferate. Refer- Refs.[8] and[9] is that the prefactor in thelt law is ex-
ence[5] proposed a “stratified droplet” model, in which a pressed in terms of several parameters, which are assumed to
sessile drop is regarded as a succession of horizontal layefg independent of the dynamics; in Reff8], for instance,
each layer being a two-dimensional, incompressible Navierthese are the particle density in the reservoir ggd On the
Stokes liquid. This model suggests that tiie law results ~ other hand,y, originates from attractive liquid-liquid inter-
from the competition between the liquid-solid attractions,actions(LLI) and thus depends on the density profile in the
which represent the driving force of spreading, and viscousfilm. The latter is itself dependent on the spreading rate, and
type frictional forces, which control particles dynamics onhence, ony.. Therefore, the calculation of, and, conse-
the solid surface. We note parenthetically that similar ideasjuently, of the prefactor in the't law requires a solution of
have been used to describe dynamics of the reverse pressentially a nonlinear dynamical problem in which attrac-
cesses: dewetting of a monolayéif and squeezing of a MT tive LLI are taken into account explicitly.
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Edge of the monolayer The model to be studied here is defined as follows:

(i) The particles experience two types of interactions, the
LLI and LSI. The LSI create effectively a lattice of potential
wells (with the coordination number and the interwell dis-
tanceo), such that the particles reside in the local minima of
these wells. We assume that the LSI correspond to the limit
of the so-called intermediate localized adsorption, which is
appropriate for many adsorbates and persists over a Wide
range[2]. In this limit the particles are neither completely

FIG. 1. Initial configuration of a monolayer on top of a solid fixed in the wells, nor completely moblle: The.LSI We”S- are

T . . . deep with respect to desorptior{desorption barrier
surface. Wavy lines depict the potential energy landscape createl(j >KksT) so that only a monolayer can exist, but have much
by the solid atoms. d* "B/ > y y '

lower barrierU, against the movement across the surface.
Further on, we suppose that the LLI are two-body, central,

In this Rapid Communication we study analytically the and additive; the LLI potential(r) is a hard-core at dis-
behavior of a liquid monolayer, which occupies initially a tancer = o, which means that each well can be occupied by
bounded, macroscopically large area of the solid surface, anshe particle at most, and is attractive foro, U(r)=
then evolves in time due to random motion of the monolayer—Uy(T)(o/r)", n>2. The parameteld o(T)<Uq4, which is
particles. Particles’ dynamics is modeled as the Kawasakithe case for many realistic situatiof®| and which implies
type particle-vacancy exchange process in the presence tfat the LLI incur only small local perturbations to the array
short-range repulsivéhard-cor¢ and weak long-range at- of the LSI wells.
tractive particle-particle interactions. Here we consider a (ii) Occupation of the well with radius-vectomt timet is
simple case when the initially occupied region is the half-described by the variablg(r;t), which can assume two val-
plane —o<X<0, Fig. 1, and calculate the mean displace-ues, 0 and 1; its realization average value, i.e., the local
mentX(t) of the monolayer edge. We note that our resultsgensity, is denoted gs(r;t) = 7(r;t). The initial configura-
apply, as well, to the intermediate time behavior in severation of the monolayer is depicted in Fig. 1, i.e., the mono-
other two-phase geometries. Particularly, the initially dewetiayer particles are placed at random positions and at a fixed
ted region can be a hole of radit&s nucleated in a homo- coveragep<1 (number of occupied wells as a fraction of the
geneous monolayer, or the monolayer can occupy a circulagtal number of wells per unit argin the wells of the half-
region of radiusR, which is a situation that appears at the pjlane — o< X<0.
late stages of sessile drops spreadiay For such geom- (i) The particles motion is activated by chaotic vibra-
etries, our results describe the kinetics on time scales Suqibns of solid atoms and proceeds by rare events of hops
thatX(t) <R, in which regime the precise form of the phase- petween the local minima of adjacent wells. In absence of
separating boundary is not importasee, e.g., Refg9]). the LLI, one may estimate the diffusion coefficient for such a

To determine the time evolution of(t), we develop a motion to beD o~ wo?/z, wherew is the frequency of hops.
mean-field-like, self-consistent approach, in which the nonNOW, the LLI Coup|e the dynamics of any given partide to
linear coupling between the density distribution in thethe motions of all other particles: first, hard-core repulsion
spreading film and the edge tensiggis taken into account prevents multiple occupancy of any potential well; second,
explicitly. Within this approach we recover the result of on escaping from the well with radius-vector any given
Refs.[9], i.e., the lawX(t) = AyDot, in whichDy is the bare  particle follows preferentially the local gradient of the LLI
diffusion coefficient describing dynamics of an isolated par-potential landscap®l(r;t),
ticle on the solid surface. Here, however, we define the pref-
actorA explicitly as a function okgT and of the interaction n(r”;t)
parameters. We show th#& can be positive or negative, U(r;t):_UO(T)UnZ Ir=r"|™ @)
which means that the monolayer can spread, partially wet or '
dewet from the solid surface, and determine the temperatui@here the summation extends over the entire lattice, exclud-
Twiaw Of the wetting-dewetting transition in the monolayer ing r”=r. To take the LLI into account, we stipulate that for
regime. Moreover, we find that spreading of the monolaye&any given particle leaving the well with radius-vectorat
can proceed quite differently at differeiit, which agrees time momentt, the choice of the jump direction is random
with the experimentally observed behavigd]. When and governed by the position-and time-dependent probabili-
T=T,, whereT, is also found explicitly, we have that ties[10],
¥.=0, A~/In(t) ast—, and the density in the monolayer
varies strongly with the distance from the edge. We remark
that this finding contradicts Ref$9], which suggest that
such a “surface-gas”-like spreading may take place only in
the absence of attractive LLI. For loweF, such that wherer, is the radius-vector of one af wells, adjacent to
Twaw=<T<Ty, we find that the density variation is less pro- the well atr, 8=1/kgT, and Z denotes the normalization
nounced and bothA and vy, are positive and constant, which factor. When the jump direction is chosen, the particle at-
signifies that in thisT range the monolayer spreads as atempts to hop into the target well. The hop is fulfilled if this
“liquid.” Last, for T<T,,qw the monolayer dewets from the well is unoccupied; otherwise, the particle attempting to hop
surface. is repelled back to the well at

p(rlr;>=z-1exp(§[U(r;t>—U<r;,t>], @
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We proceed further on by assuming local equilibriumwe find the closure equation, which determings (and
(see, e.g., Ref$10]), which implies that occupations of dif- hence,A) self-consistently as functions &f;T and of the
ferent wells factorize and thus allows for the description inLLI parameters.
terms of local densities(r;t). For these, we find The dynamics of a biased RMP in a 1D hard-core gas,

placed in the just described “shock’” configuration, has been
studied in Ref[11]. It was shown thaX(t) obeys

19 —_
— ) =—p(i) 2 p(rlr [ L= p(ry:0)] X(t) =AD, @
+H[1=p(ri)]Zp(r|r)p(rz;t),  (3)  where the prefactoA is defined forp_>p. by
2
. L= . . \/;Aexp{i 1+® é) __PP- -1, (5
in which p(r|r;) are determined by Eq$2) and (1) with 2 4 2 p_—p+
n(r;t) replaced byp(r;t). Equation(3) has to be solved
subject to the initial condition that(r;t=0)=0 for X>0 ®(x) being the probability integral. In the special case
andp(r;t=0)=p for X<0. p_=p., Ais no longer constant and grows with time as
Let us analyze now, on the basis of E®), the time

evolution of the mean displacemeX(t) of the monolayer Acc /2 In( p’wt a8 tsoe ®
edge. To do this, we follow Ref§9], supposing that for the T )’ '

long-ranged, but rapidly vanishing LLI a hop of any particle

which is not directly at the edge does not change the energMext, it was found that the density profilg\;t) past the

in Eqg. (1). This means, in virtue of Eq2), that for such RMP has a characteristi®like shapep(\;t) is almostcon-

particles all hopping directions are equally probable and theistant (and different fromp) in a region of size~X(t),

migration on the surface is constrained by the hard-core in-

teractions only. The particles being at the edge, however, are A2\ A%\

effectively attracted by the “bulk” monolayer, which results p(\; )= 1+ WJFO(XZ_(U) ' (@

in asymmetric hopping probabilitigsee Refs[9] for more

detailg. We note that such an approximation is actually awhile for greater\, )\>X(t)/A2, it approaches exponen-

translation onto the molecular level of standard descriptiongially fast. Such a form ofp(\;t) stems from the fact that

of the liquid front dynamics as a competition between survacancies propagate into the gas-phase only diffusively and

face tension and internal pressiii2]. thus homogenize the density distribution past the RMP only
Further on, since we are interested in the behavior of thet scales of order of(t). Note, however, that the total num-

mean displacement of the edge, it is justified to neglect thger of particles is conserved i.e., |im..L ™! J5dhp(X;t)

fluctuations aroun&(t) along theY axis. Consequently, we =p.

suppose that the edge position does not depend, ¢fig. 1, Turning now back to the 2D problem under study, we

which makes the system effectively one-dimensional and thgacal| thatp. are not arbitrary parameters, but their values

original two-dimensional geometry enters only through there determined by the density distribution past the edge. In-

2D diffusion coefficientD, and 2D edge tensiofsee Eq. serting Eq.(7) into the Egs.(1) and (2), we find the self-

L P
P-

9)]. ) ) consistent closure equation fpr, /p_,
Now, the one-dimensional model we have to study con-
sists of a 1D hard-core lattice gas, which is put initially into P, p.) Ug(T)é
a “shock” configuration and then evolves in time by par- pT:qu_BUYe); Ye=|1- o | 20 (8)

ticles attempting to hop to the nearest unoccupied sites. The
“shock” configuration means that all particles are placed at 1 1
random with a fixed mean densify at the sites—o<X S=o" >, [ e - n], 9)
<0 of an infinite in both directions 1D lattice. All particles, i, T =1 fro—=r7|
except the rightmost on€RMP), which defines position of
the edge, have equal probabilities {/z) for hopping to the  wherer .. denote the 2D vector6X(t) = ,Y).
left or to the right. The RMP, whose position ¥(t), is Therefore, we find that the mean displacement of the
attracted by the gas particles and thus has asymmetric hopionolayer edge obeys E@4), in which A is related to
ping probabilities, which obey Ed?2) with #(r;t) replaced Ug(T), p, andB through Eqgs(5) and(8). Below we present
by p(r;t). some analytical estimates 8f¢), wheree=BUy(T) /2 is

To determineX(t) we now proceed as follows. Recollect- a critical dimensionless parameter.
ing first the results of Refg9], we anticipate that at suffi- We find that depending on the value of the parameter
ciently large times the particle density past the RMP tends tdour different regimes can be observed:
some constant value. This implies, in virtue of E¢B. and (1) When £€[0;1] the only solution of Eq.(8) is
(2), that p(X(t)|X(t)= o) approach limiting valuesp-, p.+/p-=1, which means that herg,=0 and the monolayer
which are independent of(t) andt. Solving next the prob- behaves as an ideal surface gas. In this regiK(e)
lem for arbitrary fixedp-., we determineX(t) and the den- ~t In(t) and the density(\;t) changes rapidly with the
sity profile p(\;t), N being the distance from the edge, distancex from the edge being equal {@for A—~ and to
A= X(t)— X. Finally, insertingp(\;t) into Egs.(1) and(2),  zero forA=0.
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(2) Whene €11;¢ [, wheree.=—In(1—p)/p, the prefac- 4

tor A is positive and finite. HereX(t)~ vt and the mono- A 1

layer also wets the solid. The edge tensigi»0 and van- 3t Ve,

ishes asye~(Tp—T) whenT—Ty; T, is thus the critical Surface

temperature of the surface gas-liquid transition, which is de-
fined implicitly by equationT,=Uy(T,)6/2kg, (¢=1). In

this regimeA diverges wherz — + 1, A~ /In[p/(s—1)], and Eq.(6)
vanishes wherr —e., A~(1—p)(e.—e)/[[1—(1—p)e.]. 1r
The densityp(\;t) changes smoothly from the unperturbed

Gas,

0 p 1

A > 0; Wetting Regime

valuep to the value at the edge expfoy,), which is close 0
to p.
(3) At e =¢ the prefactoA is exactly equal to zero and A <0; Dewetting Regime
the monolayer partially wets the substrate. Hence, we denote ¢ 1 2 3 4

e =g as the point of the wetting-dewetting transition for the &

monolayer. The corresponding critical temperature is deter- FiG. 2. Numerical solution of Eqs5) and (8). Solid lines from

mined by T,,qw=Uo(Tw/aw) 6/ (2kge) and depends on the top to bottom show the dependencefobn dimensionless param-

coveragep. We note thafl,,,4,, and Ty, are simply related to eter e for p=0.9, 0.8, 0.7, and 0.5, respectively. The liee-1

each other. WherlJy(T) is independent ofT (say, for separates the “surface gas” and liquidlike phases. The inset dis-

London-type LL) one hasT,,qw=T,/e.. Actually, the in-  plays thep dependence of., [A(e;)=0].

set in Fig. 2 displays thep dependence of the ratio

Twiaw!/ Tp(=1le) for this case. For the Keesom-type inter- the motion of the retracting edge; tedependence oA is

actions, wherlJo(T) ~1/T, Tuw/qw=To/Vec. We finally re-  thus very weak, being strongly limited by the diffusive

mark that the relation betweem and e, distinguishes squeezing out of “voids” at progressively larger and larger

whether it is favorable, at given physical conditions, to havescales. In fact, for sufficiently large one may expect that

a monolayer with coveragp on the solid surface or not. the dewetting process will be accelerated by thickening of

Consequently, knowing. and the density distribution in a the monolayer, as is suggested in Hél.

sessile drop with the respect to the height above the sub-

strate, one can predict the number of superimposed layers in The authors thank S. F. Burlatsky, T. Blake, E. Raphae

the “terraced wetting” regime. and J. L. Lebowitz for helpful discussions. Financial support
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